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WmEHE
A class of nonlinear proximal point algorithms for variational

inequality problems

A

P AL E K

This work is motivated by a recent work on an extended linear proximal point
algorithm (PPA) [He et al., J. Optim. Theory Appl., 141 (2009), pp. 299--319], which
aims at relaxing the requirement of the linear proximal term of classical PPA. In this
paper, we make further contributions along the line. First, we generalize the linear
PPA-based contraction method by using a nonlinear proximal term instead of the
linear one. A notable superiority over traditional PPA-like methods is that the
nonlinear proximal term of the proposed method may not necessarily be a gradient of
any functions. In addition, the nonlinearity of the proximal term makes the new
method more flexible. To avoid solving a variational inequality subproblem exactly,
we then propose an inexact version of the developed method, which may be more
computationally attractive in terms of requiring lower computational cost. Finally, we
gainfully employ our new methods to solve linearly constrained convex minimization
and variational inequality problems.

Discontinuous Galerkin Time Domain Method for Scattering

Problems Simulation with GPU Acceleration

Gen Chen, Lei Zhao and Wenhua Yu
Center for Computational Science and Engineering, School of Mathematics and

Statistics, Jiangsu Normal University, China

An efficient numerical method for large and complex bodies is very important for
many practical applications. In this paper, the Discontinuous Galerkin time-domain
(DGTD) with GPU acceleration is proposed for simulating the large-scale
electromagnetic (EM) scattering problems. DGTD contains the adaptability of the
unstructured meshes and spatial super-convergence, which allows us to effectively
handle many practical EM problems where the required precision is different over the
entire domain, or when the solution lacks smoothness. And furthermore, the DGTD
method has an embarrassing performance for parallel processing because the coupling
of the elements only exits at interfaces. In the proposed method, we combined GPU
calculation with MPI technology for large EM problem, which makes more than one
GPU card can be used in the simulation. And the uniaxial perfectly matched layer
(UPML) is used to truncate the computational domain, in which the spatial derivative
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does not need to be calculated. With this implementation, we have done some
simulations on a workstation which includes two Intel Xeon E5-2690 CPU, NVIDIA
Quadro 6000 Graphics card and 32Gb memory. We have verified the accuracy and
efficiency of the algorithm by comparing the numerical results with analytical results.
Numerical results show that the proposed method has good parallel performance.
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A modified viscosity approximation method to fixed points for

nonexpansive mappings

ey 3t

i TR

This lecture is mainly devoted to investigating a modified algorithm to approximate
the fixed points of nonexpansive mappings in real Hilbert spaces. An iterative scheme
is presented and its convergence is analyzed. The results reveal that the proposed
iterative sequence converges strongly to a fixed point of a nonexpansive mapping
which also solves a variational inequality. In addition, a series of numerical
experiments suggest that the method approximates the fixed point more precisely in
comparison with the existing ones.
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A linearized high-order energy conservative difference scheme

for nonlinear space fractional Schrodinger equation

ARG, AN
IR R

High-order and energy conservative finite difference methods for the complex
fractional Schrodinger equation are considered in this paper. A fourth-order difference
approximation is derived for the Riesz fractional derivatives by using an asymptotic
expansion for the error in the fractional centered difference formula combining with
the compact technique. The properties of proposed fractional difference quotient
operator are presented and proved. Then the new approximation formula is applied to
solve one-dimensional fractional Schrodinger equation. A rigorous analysis of the
conservation properties, including mass conservation and energy conservation in
discrete sense are presented. By the energy method, it is proved that the difference
scheme is uniquely solvable and convergent. The convergent order in discrete L2
norm is two in temporal direction and four in spatial direction. Some numerical
examples are given to confirm the theoretical results.
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Mean-square stability of numerical methods for stochastic delay

differential equations
ok, HPA

PN
In this paper, we study mean-square stability of the Predictor-Corrector scheme and
the Midpoint scheme for stochastic delay differential equations. Then we compare
them with other numerical methods through plotting their stability regions and
simulating nonlinear equations.
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The Barzilai and Borwein method for fitting canonical tensor

decompositions
2 bl [

eV liREwNE

Tensor decompositions are higher-order analogues of matrix decompositions and have
proven to be powerful tools for data analysis. In particular, in this paper we are
interested in the canonical tensor decompositions, known as CANDECOMP/
PARAFAC (CP), which expresses a tensor as the sum of component rank-one tensors
and is used in many applications such as chemometrics, signal processing,
neuroscience and web analysis. The task of computing CP, however, is difficult. The
typical approach is based on alternating least-squares optimization (ALS), nonlinear
least-squares method (NLS), and the nonlinear conjugate gradient (NCG) method.
Computational experiments demonstrate that the gradient based methods are more
accurate than ALS and faster than NLS. In this paper, we propose the Barzilai and
Borwein gradient method for fitting canonical tensor decompositions. This method

requires less storage locations and inexpensive computations. Furthermore, a
nonmonotone line search strategy that guarantees global convergence is combined
with the Barzilai and Borwein method. We discuss the mathematical calculation of
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the derivatives, propose new algorithm establish the global convergence and report,
and the numerical results which indicate that the Barzilai and Borwein gradient
method is faster and more cheap than usual algorithms.
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A nonmonotone filter grid-based method for derivative-free

optimization
el
P UK

Recently, optimization methods have many applications in physics, chemistry,
organisms, finance and many other fields. However, since the derivatives of the
objective functions in many practical applications are unavailable or time-consuming.
Therefore, we are urgent to develop some effective methods for solving these
problems.

Pattern search method is one of the direct search methods for solving derivative-free
optimization problems. It does not need to compute the derivative of objective
functions, and can be applied to solve the problem where the derivative can not be
obtained. Coope and Price presented a new generalized pattern search method to solve
derivative-free optimization problems, which is called grid-based methods. In this
paper, we apply both nonmonotone and filter technology to grid-based algorithm and
obtain a new convergent method.

In Chapter 2, we give an introduction to grid-based method, nonmonotone and filter
technology. In Chapter 3, we present a new grid-based algorithm combined with
nonmonotone and filter technology. Convergence analysis of the improved algorithm
is given, and the numerical results to illustrate the effectiveness of our algorithm are
reported.

10
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Unconditionally error estimates of fully discrete FEMs for

nonlinear parabolic equations
2L

PN

Error analysis of fully discrete finite element methods for nonlinear parabolic
equations often requires some restrictions on the time-step size such as At = O(h%),
which are widely used in the analysis of the nonlinear PDEs from mathematical
physics, such as the Navier- Stokes equations, the time-dependent Ginzburg-Landau
equations, the Landau-Lifschitz equations, the thermistor problem, and miscible flow
in porous media. These time-step restrictions often appear when proving the
boundedness of the fully discrete solution required to control the nonlinear terms.
Here we suggest a new approach to analyze the discretization error of fully discrete
FEMSs for nonlinear parabolic equations, which remove the time-step restrictions
required in the previous works. Our idea is to introduce a system of elliptic PDEs (the
time-discrete parabolic PDEs), whose finite element solution coincides with the fully
discrete solution of the original problem. The boundedness of the fully discrete
solution is converted to the study of the discretization error of the system of elliptic
PDEs.

11
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An analysis of energy conserved splitting FDTD method for 3D

Maxwell’s Equation
238
TLIRIE KA
In this paper, we explore the accuracy limits of an energy conserved splitting finite
difference time domain (EC-S-FDTD) method applied to the Maxwell equations
which has recently been proposed to solve the Electromagnetic (EM) problem. The
EC-S-FDTD scheme for the 3D Maxwell equations is of second-order accuracy both
in time step and spatial steps with unconditional stability. We have verified the
accuracy and efficiency of the algorithm by comparing the numerical results with
analytical results. The dispersion and dissipation properties of the method are
investigated. The results of this analysis are useful for the application of the method,
and for the understanding of the behavior of the error of the method. Furthermore, the
proposed methods with perfectly matched layer (PML) boundary conditions have

been applied to solve EM scattering problems successfully. And the comparison with
general FDTD method, in term of computational cost, is also considered.

#H Q IENMFHIARLEREN LN T2
FRbh
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R o Horp 28 it — AR R, AT AN S T A A D b i oy
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2 BRI AG TR OGN, AT T AN T

Total variation regularization for a backward time-fractional

diffusion problem
TNt
IRF R

Consider a two-dimensional backward problem for a time-fractional diffusion process,
which can be considered as image de-blurring where the blurring process is assumed
to be slow diffusion. In order to avoid the over-smoothing effect for object image with
edges and to construct a fast reconstruction scheme, the total variation regularizing
term and the data residual error in the frequency domain are coupled to construct the
cost functional. The well posedness of this optimization problem is studied. The

12
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minimizer is sought approximately using the iteration process for a series of
optimization problems with Bregman distance as a penalty term. This iteration
reconstruction scheme is essentially a new regularizing scheme with coupling
parameter in the cost functional and the iteration stopping times as two regularizing
parameters. We give the choice strategy for the regularizing parameters in terms of the
noise level of measurement data, which yields the optimal error estimate on the
iterative solution. The series optimization problems are solved by alternative iteration
with explicit exact solution and therefore the amount of computation is much
weakened. Numerical implementations are given to support our theoretical analysis
on the convergence rate and to show the significant reconstruction improvements.

Numerical computations for N-coupled nonlinear Schrodinger

equations by split-step spectral methods

Tt

i AR R
In this talk, various split step spectral (SSSP) schemes are presented for N-coupled

nonlinear Schrodinger (N-CNLS) equations, especially for the systems with N =3

for which numerical studies are few. These schemes are spectrally accurate in space,
and s-th (s=1,2,4,6,8) order in time. They are proved to be conservative and to admit
the exact plane wave solution. Extensive numerical experiments are carried out for the
3- and 4-CNLS systems to confirm the theoretical analysis. Half of the schemes are
shown to possess wonderful ability of capturing high-frequency waves. However, the
eighth-order schemes which seem to be optimal fail in this test. Accuracy and
efficiency of the schemes are compared with each other, and the high-order schemes
exhibit better. Since the eighth-order schemes are not better than the sixth-order ones,
it is believed that constructing too much high-order schemes is unnecessary. Moreover,
interactions of two-soliton solutions are also well simulated by the fourth-order and
the sixth-order schemes, so the two methods are sufficient for use.

Uniform pointwise error estimates of semi-implicit compact
finite difference methods for the nonlinear Schrodinger equation

perturbed by wave operator

TR

RSN N
This study aims to analyze semi-implicit compact finite difference (SICFD) methods

13
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for the nonlinear Schrodinger equation (NLS) perturbed by the wave operator (NLSW)

with a perturbation strength described by a dimensionless parameter ¢ . Uniform |~

error bounds of the proposed SICFD schemes is established to give immediate insight
on point-wise error occurring during time evolution, and the explicit dependence of
the mesh size and time step on the parameter is figured out. In the small & regime,

high oscillations arise in time with O(g?) -wavelength at O(g*) and O(e?)

amplitudes for well-prepared and ill-prepared initial data due to the wave operator.
This highly oscillatory nature in time as well as the difficulty raised by the compact

FD discretization make establishing the 1™ -norm error bounds uniformly in & of the

SICFD methods for NLSW to be a very interesting and challenging issue. The

uniform 17 -norm error bounds in & is proved to be of O(h*+7) and O(h*+7*°

with time step 7 and mesh size h for well-prepared and ill-prepared initial data.
Finally, numerical results are reported to verify the error estimates and show that the
convergence rates are sharp in the respectively parameter regimes.
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A moving mesh WENO method for one-dimensional

conservation laws

Milede, wYER, DSEUE
LR

In this paper, we develop an efficient moving mesh weighted essentially
non-oscillatory (WENO) method for one dimensional hyperbolic conservation laws.
The method is based on the quasi-Lagrange approach of moving mesh strategy with
which the mesh is considered to move continuously in time. Several issues arising
from the implementation of the scheme, including mesh smoothness, mesh movement
restriction, and computation of transformation relations, and their effects on the
accuracy of the underlying scheme have been addressed. Particularly, it is found that a
least squares smoothing can be used to effectively smooth the mesh and the
transformation relations can be computed using either high order finite differences or
WENO applied to some geometric conservation laws. Moreover, mesh movement can
cause WENO schemes to become unconditionally unstable. A simple strategy is used
to restrict the mesh movement and recover the stability. Numerical results are
presented to demonstrate the accuracy and shock-capturing ability of the new scheme.

15
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An ADMM algorithm for hybrid variational deblurring model
M/NE, E

i AU Ko

In this paper, we propose a new efficient method for solving a hybrid variational
deblurring model to restore blurred and noisy images. The proposed model can
substantially reduce the staircase effect, while preserving sharp edges in the restored
images. Our approach is based on a variable splitting two times to obtain two
equivalent constrained optimization formulations which are then addressed with the
alternating direction method. Numerical results are given to illustrate the efficiency of
the proposed method.

Monte Carlo finite volume element methods for stochastic

convection-diffusion problems
S

P U K

This report presents a framework for the construction of Monte Carlo finite volume
element method (MCFVEM) for the stochastic convection-diffusion equation. Time
stochasticity as a source term, spatial stochasticity as a source term, time stochasticity
in the boundary conditions and a random diffusion coefficient which is described as a
random field will be treated respectively. Statistic error is estimated analytically and
experimentally. A Quasi Monte Carlo (QMC) technique with Sobol sequences is also
used to accelerate convergence, and experiments indicate that it can improve the
efficiency of the Monte Carlo method.
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Numerical schemes for the solutions of higher order nonlinear

parabolic equations

Xiaopeng Zhao?, Fengnan Liu® and Bo Liu®
% School of Science, Jiangnan University, Wuxi 214122, China

b College of Mathematics, Jilin University, Changchun 130012, China

This paper is concerned with the numerical schemes for the solutions of 1D sixth
order convective Cahn-Hilliard equation and 2D extended Fisher-Kolmogorov
equation. Based on Adomian's decomposition approach, the solutions are calculated
in the form of a convergent series with easily computable components.

Applications of variable order fractional partial differential

equation
el
B R

Fractional calculus allows variable-order of fractional operators, which can be
exploited in diverse physical and biological applications where rates of change of the
quantity of interest may depend on space and/or time. In the current work, we derive a
second-order approximation formula for the fractional time derivatives involved in
wave propagation. We then present numerical tests that verify the theoretical
estimates of convergence rate and also simulations of super-diffusion that demonstrate
new localized diffusion rates that depend on the curvature of the variable-order
function. Finally, we perform simulations of wave propagation in a truncated domain
to demonstrate how erroneous wave reflections at the boundaries can be eliminated by
super-diffusion.

Lorenz 35 Chen B I &HFIELR ERMNILEN

RbA, K
M RO
Al P B 5 B R A UMY St A 77325, %48 T Lorenz BRI

Chen BRI A AR E SR AUIZ, JFE I B S 56 70 A g6 7 B DI 4k
YRR RE. BATIRYE Lorenz #xRT Chen B [1i% 2 & AR EIEA15 A K

Bt . SRR T A FERZ B, B2, 00, 5 S 1 R4 1k

17



2014 SFLHE R FHFFARFES

e MERAARED ; 2 (CILRPERT S E; P fRFR LM AR P I R R 22 R AL 2D,

JERFIL T A E 25 11 BRI )2 MR 7544, Bt i — e A
TR = EAPLsh Z AR 5.

AV 1] 57 T Je) R KRN FRAR AR T 7 v
K¥
[PVl R v
This paper develops the immersed finite volume element (IFVE) method to solve the
elliptic interface problem with variable coefficients and nonhomogeneous jump
conditions. Using the source removal technique of nonhomogeneous jump conditions,
we get an equivalent elliptic interface problem with homogeneous jump conditions.
The nodal basis functions are constructed to satisfy the homogeneous jump conditions
near the interface and the usual finite element nodal basis functions are applied
away from the interface. The resulting linear problem is simple and effective to solve.
A proof of the error estimate in an energy norm is given. Numerical methods

demonstrate the convergence rates of the proposed method with the usual $O(h"2)$
in $LA{2}$ norm and $L{\infty}$ norm and $O(h)$ in $HA{1}$ norm.
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Finite volume element algorithms for some stochastic wave

equations
IRV

P AL E K
Firstly, we consider a viscous wave equation with stochastic perturbation. We employ
Monte Carlo method for discretization in random space and quadratic finite volume
element method for discretization in physical space. This type of scheme is verified to
robust and can simulate the solutions of equation with stochastic perturbation in a
satisfactory way. Secondly, we numerically study a stochastic nonlinear damped wave
equation.we incorporate finite volume element method with Monte Carlo Sampling
method to survey the influence of a impurity external term and two kinds of damping

effects on the propagation of solitons profile and investigate several general
quantities.

A new nonmonotone BB-TR method based on simple conic

model for large scale unconstrained optimization

T

[EEpaVliREwNE

In this paper, we study a BB-TR method based on simple conic model for solving
large scale unconstrained optimization problems.

There are many trust region methods for unconstrained optimization and the trust
region method based on conic model is an effective one. The conic model can be
regarded as a generalized quadratic model and contains more information of the
objective function. What's more, the conic model is equal to a quadratic model when
the iterate is close to the minimizer. That is to say, the conic model retains the
quadratic model's good convergence properties near the minimizer. For the good
performance of the conic trust region method, it has attracted the attention of many
experts and scholars in the last ten years. The Barzilai and Borwein gradient method
is an effective method. And it can be used for solving large scale optimization
problems, for avoiding the computation and storage of some matrices. In addition, the
BB stepsize is easy to determine without complex computation.

We combine the conic trust region method with the Barzilai and Borwein gradient
method, and propose a new nonmonotone adaptive trust region method based on
simple conic model for unconstrained optimization. Unlike traditional conic model,
the Hessian approximation is an scalar matrix based on the BB stepsize, which
resulting a simple conic model. By adding the nonmonotone technique and adaptive
technique to the simple conic model, the new method needs less storage location and
converges faster. The global convergence and superlinear convergence results are
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established under certain conditions. Numerical results indicate that the new method
is effective and attractive for large scale unconstrained optimization problems.

Localized method of approximate particular solutions extended

to several types of partial differential equations
Xueying Zhang, Haiting Yang
College of Science, Hohai University, Nanjing, China, 210098

The local method of approximate particular solutions (LMAPS) is a kind of meshless
method using radial basis functions (RBFs) which is extended to several types of
partial differential equations. In order to overcome the instability of the
ill-conditioning problem, the weighting coefficients of linear combination with
respect to all order derivatives of a function are determined by solving low order
linear systems within local supporting domain. Then local matrix is reformulated in
the global and sparse matrix. For Navier-Stokes equations, fractional step algorithm is
required to circumvent the difficulties arising from lack of an independent equation
for the pressure. The pressure Poisson equation can be directly solved by the LMAPS
throughout the whole domain instead of more complicated Successive
Over-Relaxation (SOR) iterative method. The numerical experiments have shown that
the developed LMAPS is suitable for solving PDEs with high accuracy and
efficiency.

20



2014 SFLHE R FHFFARFES

WIRFE

4 i Email
1 X AR Y PN liujiabaoad@163.com
2 Bk e B T2 gengfazhan@sina.com
3 X4k 7% IRE R jiliu@seu.edu.cn
4 Pk A IRE R zzsun@seu.edu.cn
5 PV R R hwwu@seu.edu.cn
6 Y PN PN wrcao@seu.edu.cn
7 T R K hbwang@seu.edu.cn
8 A PPN rdu@seu.edu.cn
9 TR HE RPN wangliyan@seu.edu.cn
10 m ¥ HrKF Yi.xu1983@gmail.com
1 |8 = VNP yanliang@seu.edu.cn
12 | #awm IR R 1076110451@qq.com
13 | FBRANS IRE R haochpeng@126.com
14 | ¥R R R cuicuiahuan@163.com
15 | B i R R xuanzhaoll@gmail.com
16 | i AR Hfuuxiejin@126.com
17 | Rakik NN yzzhu@hhu.edu.cn
18 | ke NN zhangxy@hhu.edu.cn
19 | B = AL clmyf2@163.com
20 | £ IR EIRE T 24 B jiangle@hhit.edu.cn
21 | P Y T2 B
22 | EMWigs VIR T 24 B wsxlyg@126.com
23 | REE M T2 Bt
24 | KT W 24P
25 | G NN txq5139@jiangnan.edu.cn
26 WK VLR K27 Yonggingyang@163.com
27 e VLR K27 chenghao@jiangnan.edu.cn
28 | BmEM NN zhaoxiaopeng@sina.cn
29 | KR ARIN NN sxhao@jsnu.edu.cn
30 | & F NI PN leizhao@jsnu.edu.cn
31 | & X AN IIE PN liwen.0628@163.com
32 | Bk NN NS huadongzhaohd@163.com
33 | PESRKR MNP EW N shshpang@163.com
34 | B W AR [N gengchn@163.com
3B | Ty PN buyangli@nju.edu.cn
36 | fE%E UK hjw@nju.edu.cn
37 | ALk UK wbdeng@nju.edu.cn
38 | ¥ # UK juwei320@163.com
39 EEZ1LE! PN ihooercom@gmail.com

21



mailto:liujiabaoad@163.com
mailto:zzsun@seu.edu.cn
mailto:Yi.xu1983@gmail.com
mailto:wsxlyg@126.com
mailto:chenghao@jiangnan.edu.cn
mailto:zhaoxiaopeng@sina.cn
mailto:gengchn@163.com
mailto:buyangli@nju.edu.cn
mailto:wbdeng@nju.edu.cn
mailto:juwei320@163.com
mailto:ihooercom@gmail.com

2014 SRLHE R FHFFARFES

40 | B BE PN Chengya02156@163.com
41 | R K PN Songfei2341@163.com
42 | ARTHMY PN shpxu0625@126.com
43 | w4 PN whuang57@nju.edu.cn
44 | JE HR PN qujing91@163.com

45 | MR [LEPnwNES jfyang@nju.edu.cn

46 | XIE PR Ny NES guoging@nijtech.edu.cn
47 | AR [N NS Shaojianf@163.com
48 | EBIRE NN math_lu@126.com

49 | TLBEA [N NS jiangshunjun@nijtech.edu.cn
50 | Ek/hik [Pl NES Xyqian122@163.com
51 | IR N NES 1344204178@qg.com
52 | LRI SRR NS 1021390778@qg.com
53 | KK P LT AR K2 dwsmath@nuaa.edu.cn
54 | K B B U LR K2 Zhujun@nuaa.edu.cn
55 | U B U LR K2 wangss@nuaa.edu.cn
56 | #&OB% P LS LR R 503251489@qq.com
57 | B fh e L R KA 813736586@qq.com
58 | 7k E R ML TR R 1054980032@qg.com
59 | EIER B AR R wangzhengsheng@nuaa.edu.cn
60 | XIHH B AR R crystailxh@126.com

61 | R B AR R yqly1234@nuaa.edu.cn
62 | R®IEE R LT TR K zhaosheng163.0k@163.com
63 | My A SR R zhou_peng007@163.com
64 | skEH B S LR K2 zhanglm@nuaa.edu.cn
65 | EF B U LR K2 wangcw@nuaa.edu.cn
66 | ¥ Hl P ML LR K2 397687438@qq.com
67 | ™ V% e N tyan@njust.edu.cn

68 | Ak e YN ygzhu@njust.edu.cn

69 | &M e N gswei@njust.edu.cn

0 |k #F B TR phil_zj@njust.edu.cn
71 FINEE TR TR mathhlsun@gmail.com
2| BrEE B E TR gigiongchen@163.com
73 o TAN [Fapny Ny nuaamhy@163.com

4| EAT B AR K2 pghuang1979@163.com
75 | H WK Fapnv N NEs guibingnj@163.com
76 | B/ [PV IFEWNES xiaoguanglv@126.com
R SES RN 925020633@qq.com
78 | Mg A RN 1214083260@qq.com
9 | H&est RN 781897307@qq.com
80 | ZIMA [PV IFEWNES caixingju@nijnu.edu.cn
81 | Bt [EpnVIPEWNES jrchen@njnu.edu.cn

22



mailto:Chengyao2156@163.com
mailto:Songfei2341@163.com
mailto:whuang57@nju.edu.cn
mailto:qujing91@163.com
mailto:jfyang@nju.edu.cn
mailto:397687438@qq.com
mailto:mathhlsun@gmail.com
mailto:qiqiongchen@163.com

2014 SRLHE R FHFFARFES

82 | Br W YN xchen@njnu.edu.cn

83 | WhflEA [PV iREwNES handeren@njnu.edu.cn
84 | INCHi P IR A wysun@njnu.edu.cn
85 | FikiA P IR A 05234@njnu.edu.cn

86 | IREE [PV iREwNES tanxueyuan@njnu.edu.cn
87 | £ Wi [PV iREwNES wanglil@njnu.edu.cn
88 | LNy VNG wangyushun@njnu.edu.cn
89 | B UL A T R 5 weihong@njnu.edu.cn
90 | TRIZFR A T R 5 xulingling@njnu.edu.cn
91 | sk A T K 5 zhangzhiyue@njnu.edu.cn
92 | #E A U R 5 617087098@qg.com
93 | MM A T K 5

94 | Jidiih P S KA enjoyrachel@126.com
95 | Yt jE P Y R Hq1162377655@163.com
96 | wAlES P TR 1195457365@qq.com
97 | THEE P TR A jiazehui90@126.com
98 | fLfifh P S KA Angel.kwing@163.com
99 | Xt P TR

100 | Mg i A T K 5 1214083260@qq.com
101 | % W TR 562039824@qq.com
102 | =8 A T K 5 313346398@qq.com
103 | £ f A T K 5 wzycmath@126.com
104 | £ & A U K2 wybudaoweng@163.com
105 | ¥ i A U K2

106 | =M P TR A 819179745@qq.com
107 | N A S KA 673540750@qq.com
108 |17 A& P TR A 767031500@qg.com
109 | ¥/ P U K yxjwyz@163.com

110 | 5k4ERT BTN 1047676246@qg.com
11 |5k 1 P TR A 108548395@qg.com
112 | 7kB% & i TR 879734743@qq.com
113 | KA i TR 767031500@qq.com
114 |k ¥ A T K2 zhuling327@gmail.com
115 | ARIRTH [PV IR EwNE queenzeus@163.com
116 | Z=[d [PV IR EwNE 269883889@qq.com
117 | FE 3 A T K2 420188371@qq.com
118 | ZThs BVl EEwNE 869262037@qq.com
119 | Znte RN

120 | FEAEN BVl EEwNE 844072204@qq.com
121 | =i BVl EEwNE 253241265@qq.com
122 | Bk R B L IGe 2 Bt junchennj@163.com
123 | HEEE A IR 2 Bt 324014696@qq.com

23



mailto:05234@njnu.edu.cn
mailto:313346398@qq.com
mailto:844072204@qq.com
mailto:253241265@qq.com

2014 SRLHE R FHFFARFES

124 | BrAS R B T RERA priestcyj@gmail.com
125 | 230k R B T RERA feiwl@nuist.edu.cn
126 | % 5 [ RSN SN jiang@nuist.edu.cn
127 | XSC% MR B T RERA wijliu.cn@gmail.com
128 | sKEA R B T RERA zhangjw@nuist.edu.cn
129 | B4R R B T RERA xdyang@nuist.edu.cn
130 | EF MR R TR R eduwyp@163.com
131 | EEH B AR B TRER S wangtingchun@nuist.edu.cn
132 | fAK4R B RUE B TRER S luchangna@163.com
133 | it M RUE R TR ymxuel@163.com
134 | iR M RE B TR nj_zaolingt@126.com
135 | R RSN N 454644886@qq.com
136 | & Ui P R S TR R 1214916644@qq.com
137 | % <& P R S TR R 1252957719@qg.com
138 | X% R TR 402986358@qg.com
139 | Xt P R T RER 2 2259049872@qg.com
140 | FEE PRI NN YN

141 | & ¥l [N SN N

142 | % [ SN NS 2711695430@qq.com
143 | Z=liE [ RSN YN Lpy789@163.com
144 | e A SIS LK 2 wutt@njupt.edu.cn
145 | JA/NgE [IECINES zxjnttc@126.com

146 | IR FIE KA shen.yl@ntu.edu.cn
147 | SRR iy DN majiang@suda.edu.cn
148 | 5k VF A IR ynzhang@suda.edu.cn
149 | T % IR dingrui@suda.edu.cn
150 | HICH PNl jingwj152@163.com
151 | % @ IR liyue_0927@126.com
152 | BRATH] IR 9069227692@qg.com
153 | 4+ & FEAS R N2 Qiang.Niu@xjtlu.edu.cn
154 | Rlfte VEAS R K 5 Xionghua. Wu@xijtlu.edu.cn
155 | 5 K VEAS R K 5 Fei.Ma@xijtlu.edu.cn
156 | FLZMS TR TR B jsdfp@163.com

157 | ZJdt TR TRE2F BB 2B | 1sb5203007@163.com
158 | BAgdtin TR TRE B B 2= Bt | zjgghh@xzit.edu.cn
159 | ¥% % RPN jtrjl_2007@126.com
160 | tR%1l EZRA DN luoshanxu@hotmail.com
161 | Mk R E AR A xwindyb@126.com
162 | EffA5R W E R sqgiu@cumt.edu.cn
163 | & 4 rh LKA junchennj@163.com
164 | A % oh PR h.shao@163.com

165 | #R/NF rh LKA xxp19.16@qq.com

24



mailto:wjliu.cn@gmail.com
mailto:eduwyp@163.com
mailto:luchangna@163.com
mailto:2711695430@qq.com
mailto:Lpy789@163.com
mailto:Qiang.Niu@xjtlu.edu.cn
mailto:Xionghua.Wu@xjtlu.edu.cn
mailto:Fei.Ma@xjtlu.edu.cn

2014 SFLHE R FHFFARFES

A RXFRERBIAN

IR KR R T 1921 48, 2 HCE KRR POR S A RO 2% 1 B [
TUERIFOIR T R HE R, MTRTAT. 1952 ERRIAHIE, MILRLEL#
R, BEFEDIER, MHBCERBRRIENS RIOLBEARIIEE, Z25%RA TR
J&. Ul R R R

DRI HINT 97 N, WEASIR 11N, #3% 17 A, ml#d% 33 A, 76%
UM RA T L2 . A EE ST ERNREIAHE 1 N, 2EE T4
REPAGE 1N, FWMHERRFBOE 3 N, HEHGHFB AR RS
Zh LN, A7333 LR RHESUEAA BTN S 1N, 47333 LR AR N
BIRn g 2 N, A7HE TR EARWKASETNE 4 N 2EERLGE LR
SHRARE 1N PEITN SN e P EV RO ARSI TN
[ RANT5 HERFE ARG E 2 N, LA RHEERA SRS 1A, BX
BRI R S PN E S ot E o S N

HOE R T RACE SN ECE . ERSTWERE Govhas. K80 4 A2
EOIC 2 S VA F b 2 a2 S IIVAS T 2% <2 e L L s AR O [
IR ARG MR AT 5 ANMFFINUG o AT B GETH 22 A — e R
L ISR R L R G AR L s BOER G AL A
MR BUET LR RA . TR R AR BORBIE AR, 7R A R
B P . (E 2007 F4AEEry — R R A4 5 23 £, B 2011 FkEEL
F2ERE EST R SCHEA RREEE N2 [T 10 446

A R VYRR K FARBH ARG T H AL 50 T, ERFE K A RBL 54
FORBEFTHRI 3. R AR A — AR =48, o [ AR SRR
SRR, VLR RPERARYE Y, BRI RS R R — A5 AR
A2 FARAR A IR E RO [F)JZ IR & B IR I B, I =TT
R . B RARVE Z RENEE | 4l 45 [ R 4 A X E R GV
KN4 A VT 0] o T4, ST S ANEE E O RS S TR R BRI
TERAE BB 28 T RSB VEACRINN, EBG T H BT AR S Bj . %%
RS BOERIIME B T TN s AR S A A

25



